베타,beta,베타의활용instance(사례),베타instance(사례),시장베타
페이지 정보
작성일 22-09-21 01:45
본문
Download : 베타,beta,베타의활용사례,베타사례,시장베타.pptx
표준편차는 분산에 루트를 씌운 것으로 분산을 표준화 한 것이 표준편차이다.
(1-3)^2 = 4
(2-3)^2 = 1
(3-3)^2 = 0
(4-3)^2 = 1
(5-3)^2 = 4
모두 더한 뒤 5로 나누면 값은 2이다
이렇게 구한 값을 분산이라고 한다.
Download : 베타,beta,베타의활용사례,베타사례,시장베타.pptx( 22 )
순서






_SLIDE_1_
베타 beta
_SLIDE_2_
베타
베타는 투자자산의 변동성 위험을
시장변동과의 상관관계로 단순화시킨 위험 측정(測定) 지표
_SLIDE_3_
_SLIDE_4_
베타 구하는 식
시장에 대한 A종목의 베타를 구하는 식
종목베타 = (종목수익률과 시장수익률의 공분산) / 시장수익률의 분산
종목수익률 = X
시장수익률 = Y
B(X) = COV(X,Y) / VAR(Y)
분산, 표준편차, 공분산, 상관계수, 회귀analysis(분석) 등의 이해가 필요
_SLIDE_5_
대푯값, 분산, 표준편차
대푯값이란 한 집단의 중간 수준을 의미
대푯값은 통계에서의 기대값과 동의어
대푯값에서 얼마나 떨어져 있는 가를 가리는 것이 분산도라고 한다.
그 중 가장 많이 쓰이는 concept(개념)이 분산 또는 표준편차이다.
그 중 가장 많이 쓰이는 concept(개념)이 분산 또는 표준편차이다.
_SLIDE_6_
예시 )
1,2,3,4,5 라는 집단이 있다
이 ...
_SLIDE_1_
베타 beta
_SLIDE_2_
베타
베타는 투자자산의 변동성 위험을
시장변동과의 상관관계로 단순화시킨 위험 측정(測定) 지표
_SLIDE_3_
_SLIDE_4_
베타 구하는 식
시장에 대한 A종목의 베타를 구하는 식
종목베타 = (종목수익률과 시장수익률의 공분산) / 시장수익률의 분산
종목수익률 = X
시장수익률 = Y
B(X) = COV(X,Y) / VAR(Y)
분산, 표준편차, 공분산, 상관계수, 회귀analysis(분석) 등의 이해가 필요
_SLIDE_5_
대푯값, 분산, 표준편차
대푯값이란 한 집단의 중간 수준을 의미
대푯값은 통계에서의 기대값과 동의어
대푯값에서 얼마나 떨어져 있는 가를 가리는 것이 분산도라고 한다.
_SLIDE_7_
그래서 사용한 방법이 각각의 값을 제곱하여 부호를
없애는 방법이다.
표준편차는 분산에 루트를 씌운 것으로 분산을 표준화 한 것이 표준편차이다.
_SLIDE_9_
두 변수의 제곱 안한 편차…(투비컨티뉴드 )
베타,beta,베타의활용사례,베타사례,시장베타 , 베타,beta,베타의활용사례,베타사례,시장베타기타레포트 , 베타 beta 베타의사례 베타사례 시장베타
베타,beta,베타의활용instance(사례),베타instance(사례),시장베타
베타,beta,베타의사례,베타사례,시장베타,기타,레포트
설명
레포트/기타
베타,beta,베타의활용instance(사례),베타instance(사례),시장베타
다.
이 값을 정상화 시키기 위해 루트를 씌우면 1.414 가
나온다.
_SLIDE_6_
예시 )
1,2,3,4,5 라는 집단이 있다
이 집단의 average(평균)은 3,
집단의 분산도를 측정(測定) , 산술average(평균)을 내보면
1-3 = -2
2-3 = -1
3-3 = 0
4-3 = 1
5-3 = 2
이것을 다 더하면 0이다.
_SLIDE_8_
공분산
(X觀察(관찰) 값-Xaverage(평균))(Y觀察(관찰) 값-Yaverage(평균))r
Cov(X,Y) = E[(X-E[X])E[Y-E[Y])r
A와 B의 공분산을 구한다면 공분산 값이 양인지 음인지를 알아야 하기 때문에 분산식 처럼 제곱을 하지 않는다. 이 값이 표준편차(σ) 이다.